Building Change Detection Using Old Aerial Images and New LiDAR Data

نویسندگان

  • Shouji Du
  • Yunsheng Zhang
  • Rongjun Qin
  • Zhihua Yang
  • Zhengrong Zou
  • Yuqi Tang
  • Chong Fan
چکیده

Building change detection is important for urban area monitoring, disaster assessment and updating geo-database. 3D information derived from image dense matching or airborne light detection and ranging (LiDAR) is very effective for building change detection. However, combining 3D data from different sources is challenging, and so far few studies have focused on building change detection using both images and LiDAR data. This study proposes an automatic method to detect building changes in urban areas using aerial images and LiDAR data. First, dense image matching is carried out to obtain dense point clouds and then co-registered LiDAR point clouds using the iterative closest point (ICP) algorithm. The registered point clouds are further resampled to a raster DSM (Digital Surface Models). In a second step, height difference and grey-scale similarity are calculated as change indicators and the graph cuts method is employed to determine changes considering the contexture information. Finally, the detected results are refined by removing the non-building changes, in which a novel method based on variance of normal direction of LiDAR points is proposed to remove vegetated areas for positive building changes (newly building or taller) and nEGI (normalized Excessive Green Index) is used for negative building changes (demolish building or lower). To evaluate the proposed method, a test area covering approximately 2.1 km2 and consisting of many different types of buildings is used for the experiment. Results indicate 93% completeness with correctness of 90.2% for positive changes, while 94% completeness with correctness of 94.1% for negative changes, which demonstrate the promising performance of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance evaluation of classification trees for building detection from aerial images and lidar data: a comparison of classification trees models

This study assesses the performance of three classification trees (CT) models (Entropy, Gain Ratio and Gini) for building detection by the fusion of laser scanner data and multi-spectral aerial images. Data from four study areas with different sensors and scene characteristics were used to assess the performance of the models. The process of performance evaluation is based on four criteria: mod...

متن کامل

Adaptive Building Edge Detection by Combining Lidar Data and Aerial Images

The building edge detection plays a key role during building extraction, which is important and necessary for building description. The edges detected from aerial images have high horizontal accuracy and represent various edge shapes well. But the edge detection in images is often influenced by contrast, illumination and occlusion. LIDAR data are suitable for judging building regions, but miss ...

متن کامل

Aerial images and LIDAR Fusion Applied in Forest Boundary Detection

-Forest boundary delineation is one of the key issues of forest management for Swiss National Forest Inventory (NFI). The proposed approach in this paper focuses on the detection of forest boundaries with special emphasis on spatially contiguous and reproducible results by using both aerial images and LIDAR data. The used Green Vegetation Index (GVI) is helpful to find green vegetation areas wh...

متن کامل

Aerial Images and Lidar Data Fusion for Disaster Change Detection

Potential applications of airborne LiDAR for disaster monitoring include flood prediction and assessment, monitoring of the growth of volcanoes and assistance in the prediction of eruptions, assessment of crustal elevation changes due to earthquakes, and monitoring of structural damage after earthquakes. Change detection in buildings is an important task in the context of disaster monitoring, e...

متن کامل

Extraction of Buildings and Trees Using Images and Lidar Data

The automatic detection and 3D modeling of objects at airports is an important issue for the EU FP6 project PEGASE. PEGASE is a feasibility study of a new 24/7 navigation system, which could either replace or complement existing systems and would allow a three-dimensional truly autonomous aircraft landing and take-off primarily for airplanes and secondary for helicopters. In this work, we focus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016